
 REM BBC BASIC FOR WINDOWS (BB4W) program to measure individual signal levels
 REM on a Windows BMP RGB file.

 REM (c) Alan Roberts 2010

 SYS "SetWindowText", @hwnd%, "(8) Measure signal levels in a BMP file."

 REM Start with the coding eqtaions.

 eqn% = OPENIN "Coding equations.txt"

 IF eqn% = 0 THEN
 PRINT " Can't find coding equations file (Coding equations.txt). Press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF

 line$ = FNinput(eqn%) : REM read the first line from the file
 IF line$ <> "Coding equations" THEN
 PRINT " File 'Coding equations.txt' is not correct. Press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF

 REPEAT : REM scan the file, ignoring comments (lines starting with //), looking for the equations
 line$ = FNinput(eqn%)
 UNTIL INSTR(line$, "Coder-") = 1 OR EOF# eqn%
 IF EOF# eqn% THEN
 PRINT " File error, no equations defined. Press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF
 PRINTTAB(0,1) " Luma coder : ";line$: REM this is the filter title
 Yr = VAL(FNinput(eqn%)) : REM coding equation coefficients
 Yg = VAL(FNinput(eqn%))
 Yb = VAL(FNinput(eqn%))
 CLOSE# eqn% : REM done with the equations file

 REM routine to get the input BMP file name for processing.

 in%=0 : REM this is going to be the input file handle
 infile$="" : REM and this will be the file name
 out% = 0 : REM and this is the handle for a text output file
 outfile$ = "" : REM, this it it's name.

 DIM of% 75,ff% 255,fn% 255 : REM byte arrays needed for Windows OpenFile routine
 !of%=76 : of%!4=@hwnd% : of%!12=ff% : of%!28=fn%
 of%!32=256 : of%!52=6 : REM BB4W stuff for Windows GetOpenFile routine
 $fn% = CHR$(0) : REM this is going to be the file name
 $ff% = "YUV 422 image file (*.bmp)" + CHR$0 + "*.bmp" + CHR$0 + CHR$0
 SYS "GetOpenFileName", of% TO in%
 IF in% THEN
 infile$ = FNnulterm$(fn%)
 PRINTTAB(0,3) " Input file = " infile$
 ELSE
 PRINTTAB(0,6) " Programme aborted at GetOpen, press any key to exit."
 IF GET QUIT :REM we're not doing any more, so close the window
 ENDIF

 REM Now we can get on with it ...

 in% = OPENUP infile$: REM open YUV bitmap file for reading

 IF CHR$(BGET# in%) + CHR$(BGET# in%) <> "BM" THEN
 PRINTTAB(0,18) " This isn't a Windows bitmap file, press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF

 PTR# in% = 10 : start% = FNget4(in%) : REM size of the header block, where image data starts
 PTR# in% = 18 : wide% = FNget4(in%) : REM image width in pixels
 PTR# in% = 22 : high% = FNget4(in%) : REM image height in lines
 PTR# in% = 0 : REM reset ready to start copying the header block
 CLOSE# in% : REM release the file so that I can load it to the screen.
 aspect = wide% / high% : REM image aspect ratio

 PRINTTAB(0,6) " The bitmap file will now be displayed, scaled down if it's too big to fit the screen."
 PRINT'" Move the cursor around with the mouse. The RGB values at the pointer position will be shown in"
 PRINT " the window title bar."
 PRINT'" Initially, you are measuring exactly one pixel. You can change the size of the measurement area"
 PRINT " using the cursor keys (up/down to change the height, left/right for the width). If either the"
 PRINT " width or height of the measurement area is greater than unity, then you will see a box marking"
 PRINT " it by inverting the image colour, it will move with the cursor."
 PRINT'" Press any key to clear this screen and load the bitmap file."
 PRINT'" Measurements will continue automatically until you press any mouse button to exit the program"

 IF GET

 scale=1 : REM scale factor for loaded bitmap file
 r% = 1 : REM flag for "OK"
 SYS "GetSystemMetrics", 0 TO wscreen% : REM get the screen width for the actual computer display
 SYS "GetSystemMetrics", 1 TO hscreen% : REM and height

 IF wide%>wscreen% OR high%>hscreen%-65 THEN
 SYS "MessageBox", @hwnd%, "File too big for the display, scale and load it anyway (colours may be wrong but analysis will be correct) ?", "Lo
ad BMP File", 32+1 TO r%
 scale = FNmax(wide% / wscreen%, high% / (hscreen% - 65))
 PRINT " Scale ";scale
 IF r%=1 THEN
 SYS "SetWindowText", @hwnd%, FNname(infile$) + "scaled"
 ELSE
 PRINT " Process aborted at file loading stage. Press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF
 ENDIF

 REM set a screen mode to accommodate the inage file, this is Windows stuff

 DIM rc% 15 : REM data block for screen window size
 VDU 23, 22, high% / scale * aspect; high% / scale; 8, 16, 16, 0 : REM don't ask, just don't ask :-)
 SYS "PatBlt", @memhdc%, 0, 0, 1600, 1200, &FF0062
 SYS "GetSysColor", 5 TO f% : REM look up system colours
 COLOUR 15, f%, f%>>8, f%>>16 : REM define colour 15 in RGB
 SYS "GetClientRect", @hwnd%, rc% : REM get the display screen size
 wwindow% = rc%!8 : hwindow% = rc%!12 + 2 : REM size of window after status bar added
 COLOUR 128 + 15 : CLS : REM set white as background colour and clear to it
 COLOUR 0 : REM black for printing
 SYS "GetWindowLong", @hwnd%, -16 TO f% : REM get window dimensions
 SYS "SetWindowLong", @hwnd%, -16, f% OR &40000 : REM don't lock them
 SYS "GetClientRect", @hwnd%, rc% : REM get window size
 VDU 26, 28, 1, hwindow% / 16 - 2, wwindow% / 8 - 2, 1 : REM now set the actual display window for the image
 IF scale > 1 SYS "SetStretchBltMode", @memhdc%, 3

 REM now we can load and display the file

 OSCLI "Display """ + infile$ + """ 0,0," + STR$(INT(high% * 2 / scale * aspect)) + "," + STR$(INT(high% * 2 / scale))

 in% = OPENUP infile$: REM open the bitmap file for reading
 w% = 0 : h% = 0 : n% = (w% + 1) * (h% + 1) : REM measurement patch size
 MOUSE xm%, ym%, b% : REM get pixel coordinates of the mouse cursor
 xp% = xm%/2 - w%/2: yp% = ym%/2 - h%/2
 GCOL 3, 7 : REM invert the image colour

(8) Measure pixel values.bbc Page 1 28/08/2010

 IF w% > 0 AND h% > 0 : RECTANGLE 2*xp%, 2*yp%, 2*w%, 2*h% : REM mark the cursor
 IF w% > 0 AND h% = 0 : LINE 2*xp%, 2*yp%, 2*xp% + 2*w%, 2*yp%
 IF w% = 0 AND h% > 0 : LINE 2*xp%, 2*yp%, 2*xp%, 2*yp% + 2*h%

 REPEAT
 IF xm% >= 0 AND xm% < wide%*2 AND ym% >= 0 AND ym% < high%*2 THEN
 R% = 0 : G% = 0 : B% = 0 : REM reset variables
 N%=0
 FOR y% = yp% TO yp% + h%
 FOR x% = xp% TO xp% + w% : REM accumulate values from the patch
 PTR# in% = FNptr(FNmin(FNmax(x%, 1), wide%), high% - FNmin(FNmax(y%, 1), high%), wide%, high%, 3) + start%
 B% += BGET# in% : G% += BGET# in% : R% += BGET# in%
 NEXT
 NEXT
 R = FNdac(R% / n%) : G = FNdac(G% / n%) : B = FNdac(B% / n%)
 Y = Yr * R + Yg * G + Yb * B
 R% /= n% : G% /= n% : B% /= n%
 @% = &A
 str$ = "At " + STR$(x% + 1) + "," + STR$(y% + 1) + " ("+STR$(w% + 1) + "x" + STR$(h% + 1) + ") : "
 @% = &102000A
 str$ += "R' = " + STR$(R%)
 @% = &102030A
 str$ += " (" + STR$(R) + "),"
 @% = &102000A
 str$ += " G' = " + STR$(G%)
 @% = &102030A
 str$ += " (" + STR$(G) + "),"
 @% = &102000A
 str$ += " B' = " + STR$(B%)
 @% = &102030A
 str$ += " (" + STR$(B) + "), Y' = " + STR$(Y)
 SYS "SetWindowText", @hwnd%, str$
 WAIT 5
 IF w% > 0 AND h% > 0 : RECTANGLE 2*xp%, 2*yp%, 2*w%, 2*h% : REM delete the cursor marker
 IF w% > 0 AND h% = 0 : LINE 2*xp%, 2*yp%, 2*xp% + 2*w%, 2*yp%
 IF w% = 0 AND h% > 0 : LINE 2*xp%, 2*yp%, 2*xp%, 2*yp% + 2*h%
 MOUSE xm%, ym%, b% : REM get pixel coordinates of the mouse cursor
 xp% = xm%/2 - w%/2: yp% = ym%/2 - h%/2
 IF INKEY(-122) : w% += 1 : REM cursor right
 IF INKEY(-26) : w% -= 1 : REM cursor left
 IF INKEY(-58) : h% += 1 : REM cursor up
 IF INKEY(-42) : h% -= 1 : REM cursor down
 w% = FNmin(FNmax(w%, 0), 99) : h% = FNmin(FNmax(h%, 0), 99)
 IF w% > 0 AND h% > 0 : RECTANGLE 2*xp%, 2*yp%, 2*w%, 2*h% : REM re-mark the cursor
 IF w% > 0 AND h% = 0 : LINE 2*xp%, 2*yp%, 2*xp% + 2*w%, 2*yp%
 IF w% = 0 AND h% > 0 : LINE 2*xp%, 2*yp%, 2*xp%, 2*yp% + 2*h%
 n% = (w% * scale + 1) * (h% * scale + 1) : REM number of pixels measured
 REPEAT
 UNTIL INKEY(0) = -1 : REM empty the keyboad buffer
 ENDIF
 UNTIL b%

 CLOSE# in% : REM finished with input file

 QUIT : REM all done, so close the window

 REM These are standard routines

 DEF FNnulterm$(A%) : REM return BB4W string from Windows string (terminated by null)
 LOCAL s$
 WHILE ?A% <> 0
 s$ += CHR$(?A%) : A% += 1 : REM strip off characters until the first null
 ENDWHILE
 =s$

 DEF FNinput(A%) : REM read a line of text from the file, throw away non-printing characters
 LOCAL l$
 INPUT# A%, l$
 IF ASC(l$) <= 32 : l$ = MID$(l$,2)
 IF ASC(RIGHT$(l$, 1)) <=32 : l$ = LEFT$(l$, LEN(l$) -1)
 =l$

 DEF FNname(A$) : REM drop path from filename
 LOCAL n$, p%
 p% = LEN(A$)
 WHILE MID$(A$, p%, 1) <> "\" AND p% > 0
 n$ = MID$(A$, p%, 1) + n$
 p% -= 1
 ENDWHILE
 = n$

 DEF FNptr(A%,B%,C%,D%,E%) : REM point to pixel at a%,b%, image c%xd%, e% planes
 =(D% - B%) * ((E% * C% + E%) DIV 4 * 4) + E% * (A% - 1)

 DEF FNget4(A%) : REM get 4 byte number from file
 =FNget2(A%) + 256 * 256 * FNget2(A%)

 DEF FNget2(A%) : REM get a 2 byte number from file
 =(BGET# A%) + 256 * (BGET# A%)

 DE FFNmax(A, B) : REM return the greater value
 IF A > B : = A
 = B

 DEF FNmin(A, B) : REM return the greater value
 IF A < B : = A
 = B

 DEF FNdac(A) : REM undo coder RGB digitising, return analogue
 =(A - 16) / 219

(8) Measure pixel values.bbc Page 2 28/08/2010

