
 REM BBC BASIC FOR WINDOWS (BB4W) program to generate a standard Windows bitmap file
 REM (.BMP) file from a raw data file capture of serial digital video, 8-bit YUV

 REM (c) Alan Roberts 2010

 SYS "SetWindowText", @hwnd%, "(1) Generate BMP file from RAW YUV file"

 raw% = 0 : REM input file handle
 rawfile$ = "" : REM input file name
 bmp% = 0 : REM output file handle
 bmpfile$ = "" : REM output file name

 REM routine to get the input RAW file name for processing.

 DIM of% 75,ff% 255,fn% 255 : REM byte arrays needed for Windows OpenFile routine
 !of%=76 : of%!4=@hwnd% : of%!12=ff% : of%!28=fn%
 of%!32=256 : of%!52=6 : REM BB4W stuff for Windows GetOpenFile routine
 $fn% = CHR$(0) : REM this is going to be the file name
 $ff% = "RAW image file " + CHR$0 + "*.raw;*.yuv" + CHR$0 + "Any file (*.*)" + CHR$0 + "*.*" + CHR$0 + CHR$0
 SYS "GetOpenFileName", of% TO raw%
 IF raw% THEN
 rawfile$ = FNnulterm$(fn%)
 bmpfile$ = rawfile$+".bmp"
 PRINT'" RAW file = " rawfile$
 PRINT " BMP file = " bmpfile$
 PRINT
 ELSE
 PRINT " Programme aborted at GetOpen, press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF

 raw%= OPENIN rawfile$
 size% = EXT# raw% : REM size of the raw file in bytes
 PRINT'" The RAW file is assumed to be organised as 4:2:2 subsampled, with UYVY data groups, so the file"
 PRINT " size should be double the image width times height, plus any offset to ignore a header block."
 PRINT " Enter a zero to abort the process."
 PRINT'" This software was written for and tested on video files captured using a DVC ClipRecorder XTreme."

 REM Other file formats are possible, e.g. 4:4:4, and 4:2:2 with other data groupings, but I have
 REM yet to come across them in practice. Also, it is feasible that FAW files could have some form
 REM of header block, so so the image data would start after that, but, again, I have not yet seen
 REM any such file.

 PRINT
 PRINT'" RAW file size = ";size%
 REPEAT
 PRINTTAB(5,12) SPC 80
 PRINTTAB(5,13) SPC 80
 PRINTTAB(5,14) SPC 80
 INPUTTAB(5,12) "Enter RAW image width, pixels = " wide%
 INPUTTAB(5,13) "Enter RAW image height, lines = " high%
 INPUTTAB(5,14) "Enter offset to start of image data ";offset%
 IF wide% * high% * 2 + offset% <> size% THEN
 PRINTTAB(5,16) "Dimensions don't match file size (width * heigtht = ";wide% * high% * 2 + offset%")"
 ENDIF
 UNTIL wide% * high% * 2 +offset% = size% OR wide% * high% = 0
 IF wide% * high% = 0 THEN
 PRINT " Program aborted at image size entry, press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF
 PRINTTAB(5,16) SPC 80

 REM Now we can get on with it ...

 REM Open the output file and insert the header block. Can't do it all in one pass

 bmp% = OPENOUT bmpfile$: REM this generates the output file for writing to.
 BPUT# bmp%, ASC("B") : BPUT# bmp%, ASC("M") : REM identify it as BMP
 PROCput4(bmp%, 0) : REM file size, come back to put this in
 PROCput2(bmp%, 0) : PROCput2(bmp%, 0) : REM reserved, don't know what for
 PROCput4(bmp%, 0) : REM offset to start of image data, come back to put this in
 PROCput4(bmp%, 40) : REM size of header info block
 PROCput4(bmp%, wide%) : REM image width
 PROCput4(bmp%, high%) : REM image height
 PROCput2(bmp%, 1) : REM number of planes
 PROCput2(bmp%, 24) : REM bits per pixel, 3 bytes/pixel
 PROCput4(bmp%, 0) : REM 0 means no compression
 PROCput4(bmp%, 3*wide%*high%) : REM image size, can also be zero
 PROCput4(bmp%, 2834) : REM h pixels/m, defaults to 72dpi
 PROCput4(bmp%, 2834) : REM v pixels/m, defaults to 72dpi
 PROCput4(bmp%, 0) : REM colours in bitmap, calculated from biBitCount
 PROCput4(bmp%, 0) : REM number of important colours, 0 means they all are
 start% = PTR# bmp% : REM image bytes start here

 REM now go back and finish off the header stuff.

 PTR# bmp% = 2 : PROCput4(bmp%, start% + 3 * wide% * high%) : REM store the file size
 PTR# bmp% = 10 : PROCput4(bmp%, start%) : REM size of the header block, normally 54

 REM now we can do the actual conversion.
 REM The RAW file is assumed to be organised as 4:2:2, in UYVY groups

 PTR# raw%=offset% : REM ignore any specified header block in the RAW file

 x%=0 : REM horizontal pixel position in BMP file
 FOR y% = 1 TO high%
 PTR# bmp% = (high% - y%) * ((3 * wide% + 3) DIV 4 * 4) +3 * (x% - 1) + start%
 FOR x% = 1 TO wide%
 IF x% MOD 2 = 1 THEN
 U% = BGET# raw% : Y% = BGET# raw% :REM UYVY
 BPUT# bmp%, 128 : BPUT# bmp%, Y% : BPUT# bmp%, 128
 ELSE :REM odd pixels above, even below
 V% = BGET# raw% : Y% = BGET# raw% :REM UYVY
 BPUT# bmp%, U% : BPUT# bmp%, Y% : BPUT# bmp%, V%
 ENDIF
 NEXT
 PRINT TAB(0,18) " Processing line = ";y%
 IF INKEY(0)=27 EXIT FOR
 NEXT
 CLOSE# raw% : REM finished with the RAW file
 CLOSE# bmp% : REM finished with the BMP file as well

 PRINTTAB(0,20) " The output BMP file is organised such that Cb is in the B plane, Y in the G plane,"
 PRINTTAB(0,21) " and Cr in the R plane. Alternate samples in the chroma planes are mid-grey. Run"
 PRINTTAB(0,22) " program 2 to fill in the gaps in chroma and then decode it to RGB."

 PRINTTAB(0,24) " Do you want to load the file for viewing now? (N = exit) "

 IF INSTR("Nn", GET$) : QUIT : REM we're not loading it, so close the window

 aspect = wide% / high% : REM image aspect ratio

 scale=1 : REM scale factor for loaded bitmap file
 r% = 1 : REM flag for "OK"
 SYS "GetSystemMetrics", 0 TO wscreen% : REM get the screen width for the actual computer display
 SYS "GetSystemMetrics", 1 TO hscreen% : REM and height
 IF wide%>wscreen% OR high%>hscreen%-65 THEN
 SYS "MessageBox", @hwnd%, "File too big for the display, scale and load it anyway (colours may be wrong)?", "Load BMP File", 32+1 TO r%

(1) Make YUV BMP from RAW YUV.bbc Page 1 28/08/2010

 scale = FNmax(wide% / wscreen%, high% / (hscreen% - 65))
 IF r%=1 THEN
 SYS "SetWindowText", @hwnd%, FNname(bmpfile$)
 ELSE
 PRINT'" Process aborted at file loading stage. Press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF
 ENDIF

 REM set a screen mode to accommodate the inage file, this is Windows stuff

 DIM rc% 15 : REM data block for screen window size
 VDU 23, 22, high% / scale * aspect; high% / scale; 8, 16, 16, 0 : REM don't ask, just don't ask :-)
 SYS "PatBlt", @memhdc%, 0, 0, 1600, 1200, &FF0062
 SYS "GetSysColor", 5 TO f% : REM look up system colours
 COLOUR 15, f%, f%>>8, f%>>16 : REM define colour 15 in RGB
 SYS "GetClientRect", @hwnd%, rc% : REM get the display screen size
 wwindow% = rc%!8 : hwindow% = rc%!12 + 2 : REM size of window after status bar added
 COLOUR 128 + 15 : CLS : REM set white as background colour and clear to it
 COLOUR 0 : REM black for printing
 SYS "GetWindowLong", @hwnd%, -16 TO f% : REM get window dimensions
 SYS "SetWindowLong", @hwnd%, -16, f% OR &40000 : REM don't lock them
 SYS "GetClientRect", @hwnd%, rc% : REM get window size
 VDU 26, 28, 1, hwindow% / 16 - 2, wwindow% / 8 - 2, 1 : REM now set the actual display window for the image
 IF scale > 1 SYS "SetStretchBltMode", @memhdc%, 3

 REM now we can load and display the file

 OSCLI "Display """ + bmpfile$ + """ 0,0," + STR$(INT(high% * 2 / scale * aspect)) + "," + STR$(INT(high% * 2 / scale))

 END : REM program ends here, but the window stays open

 REM These are standard routines

 DEF FNnulterm$(A%) : REM return BB4W string from Windows string (terminated by null)
 LOCAL s$
 WHILE ?A% <> 0
 s$ += CHR$(?A%) : A% += 1 : REM strip off characters to find the first non-null
 ENDWHILE
 =s$

 DEF PROCput4(A%, B%) : REM put 4 byte number B% into file with handle A%
 PROCput2(A%, B% MOD (256^2)) : PROCput2(A%, B% DIV (256^2))
 ENDPROC

 DEF PROCput2(A%, B%) : REM put a 2 byte number B% into file with handfle A%
 BPUT# A%, B% MOD 256 : BPUT# A%, B% DIV 256
 ENDPROC

(1) Make YUV BMP from RAW YUV.bbc Page 2 28/08/2010

