REM BBC BASIC FOR WINDOWS (BB4w) pro%ram to convert a 4:2:2 subsampled yuv file to
REM 4:4:4 YUV by interpolating the chroma.

REM (c) Alan Roberts 2010

SYS "setwindowText", @hwnd%, "(2) Convert bitmap file (4:2:2 YUV) to 4:4:4, interpolating the chroma channels"
REM Start with the resampling filter.

filter% = OPENIN "Chroma filter.txt"

1F filter% = 0 THEN .) . .
PRINT " can't find Chroma filter file (Chroma filter.txt). Press any key to exit."

IF GET QUIT : REM we're not doing any more, so close the window
ENDIF
Tine$ = FN1nput(f11terA) : REM read the first Tline from the file

IF Tine$ <> chroma filter" THEN
PRINT " File 'Chroma filter.txt' is not correct. Press any key to exit.

IF GET QUIT : REM we're not doing any more, so close the window
ENDIF
REPEAT :REM scan the file, ignoring comments (lines starting with //), looking for the filter

Tine$ = FNinput(filter%)
UNTIL INSTR(1ine$, "Filter-") = 1 orR EOF# filter%
IF EOF# filter% THEN
PRINT " File error, no filter defined. Press any key to exit."

IF GET QUIT : REM we're not doing any more, so close the window
ENDIF
PRINTTAB(0,1) " Chroma resampling : ";1ine$: REM this is the filter title
order% = VAL(FN1nput(f11terA)) : REM this should be the filter order
PRINTTAB(5,3) " Filter order = ";order% L
DIM term(orderA/2+1) : REM create an array to hold the coefficients
FOR term%=0 TO order%/2 + 1 L i
term(term%) = VAL(FNinput(filter%)) : REM read a coefficient at a time
NEXT
CLOSE# filter% : REM done with the filter file

REM routine to get the input BMP file name for processing.

in%=0 : REM this is going to be the input file handle
infile$="" : REM and this will be the file name
DIM of% 75,ff% 255,fn% 255 : REM byte arrays needed for windows OpenFile routine
10f%=76 1 of%14=C@hwnd% : of%!12=ff% : ofA'ZS fn%
of%!132=256 : of%!52=6 : REM BB4W stuff for windows GetOpenFile routine
$fn% = CHRE(0) : REM this is %o1ng to be the file name
$Ff% = "vuv 422 image file (*.bmp)" + CHR$O + "*.bmp" + CHRS0 + CHRS$O
SYS "GetOpenFileName", of% TO in%
IF in% THEN
infile$ = Fnnulterm$ (fn%)
PRINTTAB(0,5) " Input/output Yuv (4:2:2) file = " infile$
ELSE
PRINTTAB(0,5) " Programme aborted at GetOpen, press any key to exit."
IF GET QUIT : REM we're not doing any more, so close the window
ENDIF

PRINTTAB(0,8) " The input file is assumed to be_organised as 4:2:2 chroma subsampled, Cb 1n B plane,”
PRINTTAB(0,9) " Y in the G plane, Cr in the R plane. Alternate chroma samples are mid- grey.

REM Now we can get on with it ...
in% = OPENUP infile$:REM open for read/write, to read pixels, and insert missing chroma samples by filtering
IF CHRS(BGET# in%) + CHRS(BGET# in%) <> "BM" THEN

PRINTTAB(0,11) " This isn't a windows bitmap file, press any key to exit."
IF GET QUIT

ENDIF

PTR# in% = 10 : start% = FNget4(in%) : REM size of the header block, where image data starts
PTR# in% = 18 : wide% = FNget4(in%) : REM image width in pixels

PTR# in% = 22 : high% = rFnget4(in%) : REM image height in Tlines

REM now we can do the actual conversion.

u =0 : REM Cb value

v_ =0 : REM Cr value

ul = 0 : REM Cb value to the Teft of centre
ur = 0 : REM Cb value to the right of centre
vl = 0 : REM Cr value to the left of centre
vr = 0 : REM Cr value to the right of centre
Y% = 0 : REM Tuma value for pixel

2% = 0 : REM dummy value, not used

FOR y% = 1 TO high% : REM beware, BMP images are stored inverted
FOR x%= 1 10 wide%
PTR# in% = FNptr(x%, y%, wide%, high%, 3) + start% : REM each pixel in_turn
u = FNUvdac(BGET# in%) * term(0) : Y% = BGET# in% : v = FNUvdac(BGET# in%) * term(0) : REM the chroma values
FOR term% = 1 TO order%/2 : REM get the chroma pixels either side
PTR# in%=FNptr(FNmax(x% - term%, 1), y%, wide%, high%, 3) + start%
ul = FNUVdac(BGET# in%) : z% = BGET# in% vl = FNUVdac (BGET# in%)
PTR# in%=FNptr(FNmin(x% + term%, 1), y%, wide%, high%, 3) + start%
ur = FNUVdac(BGET# in%) : z% = BGET# in% :vr = FNUVdac(BGET# in%)

u += (ul + ur) * term(term%) : v += (vl + vr) * term(term%) : REM this 1is the filter output
NEXT
PTR# in% = FNptr(x%, y%, wide%, high%, 3) + start% : REM back to the original centre pixel
BPUT# in%, FNUvadc(u/term(0)) : BPUT# in%, Y% : BPUT# in%, FNUvadc(v/term(0))
NEXT
PRINTTAB(0,13) " Processing line ";y%
NEXT

CLOSE# in%

PRINTTAB(0,21) " Do you want to load the file for viewing now? (N = exit) "

IF INSTR(C"Nn", GET$) : QUIT : REM we're not loading it, so close the window
aspect = wide% / high% : REM image aspect ratio

scale=1 : REM scale factor for loaded bitmap file

r% =1 : REM flag for "OK"

SYS "GetSystemMetrics", 0 TO wscreen% : REM get the screen width for the actual computer display
SYS "GetSystemMmetrics", 1 TO hscreen% : REM and height
IF wide%>wscreen¥% OR high%>hscreen%-65 THEN
SYS "MessageBox", @hwnd%, "File too big for the display, scale and load it anyway (colours may be wrong)?", "Load BMP File", 32+1 TO r%
scale = FNmax(wide% / wscreen¥%, high% / (hscreen% - 65))
IF r%=1 THEN
SYs "setwindowText", @hwnd%, FNname(infile$)

ELSE
PRINT " Process aborted at file Toading stage. Press any key to exit."
IF GET QUIT :REM we're not doing any more, so close the window
ENDIF
ENDIF

REM set a screen mode to accommodate the inage file, this is windows stuff

DIM rc% 15 : REM data block for screen window size
vbU 23, 22, high% / scale * aspect; high% / scale; 8, 16, 16, 0 : REM don't ask, just don't ask :-)
sys "patelt", @memhdc%, 0, 0, 1600, 1200, &FF0062

(2) Interpolate 422 YUV BMP.bbc Page 1 28/08/2010

SYs "GetSysColor", 5 TO % : REM
CoLOuUrR 15, %, f%>>8, f%>>16 : REM
svys "GetClientrRect", @hwnd%, rc% : REM
wwindow% = rc%!8 : hwindow% = rc%!12 + 2 : REM
COLOUR 128 + 15 : CLS : REM
COLOUR 0O : REM
sys "GetwindowLong", @hwnd%, -16 TO % : REM
sys "setwindowLong", @hwnd%, -16, f% OrR &40000 : REM
svs "GetClientrect", @hwnd%, rc% : REM
vbU 26, 28, 1, hwindow% / 16 - 2, wwindow% / 8 - 2, 1 : REM
IF scale > 1 sys "setstretchBltMmode", @memhdc%, 3

REM now we can load and display the file

0scLT "pisplay """ + infile$ + """ 0,0," + STRS(INTChigh% *
END : REM program ends here, but the window stays open

REM These are standard routines

Tlook up system colours

define colour 15 in RGB

get the display screen size

size of window after status bar added

set white as background colour and clear to it
black for printing

get window dimensions

don't Tock them

get window size

now set the actual display window for the image

2 / scale * aspect)) + "," + STRS(INT(Chigh% * 2 / scale))

DEF FNnulterm$(A%) : REM return BB4W string from windows string (terminated by null)

LOCAL s
WHILE ?A% <> 0

s$ += CHRS(?A%) : A% += 1 : REM strip off characters until the first null

ENDWHILE
=s$

DEF FNinput(A%) : REM read a line of text from the file, throw away non-printing characters

LOoCAL 1%

INPUT# A%, 1%

IF ASC(1$) <= 32 : 1
IF ASC(RIGHTS(1$, 1)

$ =wmins(1%,2)
) <=32 : 1% = LerTS1S, Len(1$) -1)
DEF FNget4(A%) : REM get 4 byte number from file
=FNget2(A%) + 256 * 256 * FNget2(A%)

DEF FNget2(A%) : REM get a 2 byte number from file
=(BGET# A%) + 256 * (BGET# A%)

DEF FNptr(A%,B%,C%,D%,E%) : REM point to pixel at a%,b%, image c%xd%, e% planes

=(D% - B%) * ((E% * C% + E%) DIV 4 * 4) + E% * (A% - 1)

DEF FNmax(A, B) : REM return the greater value
IFA>B: =A
=B

DEF FNmin(A, B) : REM return the greater value
IFA<B::=A

=B

DEF FNUvadc(A) : REM UV coder quantising, return digits
= 128 + A * 224

DEF FNUvdac(A) : REM undo coder UV digitising, return analogue

= (A - 128) / 224

(2) Interpolate 422 YUV BMP.bbc

Page 2

28/08/2010

