
 REM BBC BASIC FOR WINDOWS (BB4W) program to perform spatial filtering
 REM on a Windows BMP RGB file.

 REM (c) Alan Roberts 2010

 SYS "SetWindowText", @hwnd%, "(5) Generate filtered copy of RGB BMP file."

 REM first get the filter coefficients

 filter% = OPENIN "Noise filter.txt"

 IF filter% = 0 THEN
 PRINT " Can't find noise filter file (Noise filter.txt). Press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF

 line$ = FNinput(filter%) : REM read the first line from the file
 IF line$ <> "Noise filter" THEN
 PRINT " File 'Noise filter.txt' is not correct. Press any key to exit."
 IF GET QUIT :REM we're not doing any more, so close the window
 ENDIF

 REPEAT : REM scan the file, ignoring comments (lines starting with //), looking for the filter
 line$ = FNinput(filter%)
 UNTIL INSTR(line$, "Filter-") = 1 OR EOF# filter%
 IF EOF# filter% THEN
 PRINT " File error, no filter defined. Press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF
 PRINTTAB(0,1) " Noise filter : ";line$: REM this is the filter title
 order% = VAL(FNinput(filter%)) : REM this should be the filter order
 PRINTTAB(5,3) " Filter order = ";order%
 DIM term(order%/2+1) : REM create an array to hold the coefficients
 FOR term%=0 TO order%/2
 term(term%) = VAL(FNinput(filter%)) : REM read a coefficient at a time
 NEXT
 CLOSE# filter% : REM done with the filter file

 PRINTTAB(0,5) " Horizontal spatial filtering is done on each plane of the file (R, G and B) separately,"
 PRINT " vertical filtering is not needed."

 REM routine to get the input BMP file name for processing.

 in%=0 : REM this is going to be the input file handle
 infile$="" : REM and this will be the file name
 out%=0 : REM this is going to be the output file handle
 outfile$="" : REM and this will be the file name

 DIM of% 75,ff% 255,fn% 255 : REM byte arrays needed for Windows OpenFile routine
 !of%=76 : of%!4=@hwnd% : of%!12=ff% : of%!28=fn%
 of%!32=256 : of%!52=6 : REM BB4W stuff for Windows GetOpenFile routine
 $fn% = CHR$(0) : REM this is going to be the file name
 $ff% = "YUV 422 image file (*.bmp)" + CHR$0 + "*.bmp" + CHR$0 + CHR$0
 SYS "GetOpenFileName", of% TO in%
 IF in% THEN
 infile$ = FNnulterm$(fn%)
 outfile$ = LEFT$(infile$, LEN(infile$) - 4) + "-hpfx2.bmp"
 PRINTTAB(0,8) " Input file = " infile$
 PRINTTAB(0,9) " Output file = " outfile$
 ELSE
 PRINTTAB(0,11) " Programme aborted at GetOpen, press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF

 REM Now we can get on with it ...

 in% = OPENUP infile$:REM open YUV bitmap file for reading

 IF CHR$(BGET# in%) + CHR$(BGET# in%) <> "BM" THEN
 PRINTTAB(0,14) " This isn't a Windows bitmap file, press any key to exit."
 IF GET QUIT :REM we're not doing any more, so close the window
 ENDIF

 PTR# in% = 10 : start% = FNget4(in%) : REM size of the header block, where image data starts
 PTR# in% = 18 : wide% = FNget4(in%) : REM image width in pixels
 PTR# in% = 22 : high% = FNget4(in%) : REM image height in lines
 PTR# in% = 0 : REM reset ready to start copying the header block

 out% = OPENOUT outfile$: REM open new file for RGB output
 FOR p% = 1 TO start% : REM copy the header block from input to output file
 BPUT# out%, BGET# in%
 NEXT

 REM now we can do the actual conversion.

 PTR# out% = start%
 FOR y% = 1 TO high% : REM beware, images are stored inverted in BMP files
 PTR# out% = FNptr(0, y%, wide%, high%, 3) + start% : REM each line in turn
 FOR x%= 1 TO wide%
 R = 1/2 : G = 1/2 : B = 1/2 : REM reset for accummulation, set to mid-grey
 FOR term% = -order%/2 TO order%/2
 p% = x% + term% : REM actual pixel position
 p% = FNmax(p%, 1) : REM avoid going off image to the left
 p% = FNmin(p%, wide%) : REM and right
 PTR# in% = FNptr(p%, y%, wide%, high%, 3) + start% : REM read pixels around the target point
 B += (FNdac(BGET# in%) * term(ABS(term%)) * 2) : REM accumulate values, weighted by the filter
 G += (FNdac(BGET# in%) * term(ABS(term%)) * 2) : REM and doubled to avoid clipping noise
 R += (FNdac(BGET# in%) * term(ABS(term%)) * 2)
 NEXT
 BPUT# out%, FNadc(B) : BPUT# out%, FNadc(G) : BPUT# out%, FNadc(R)
 NEXT
 PRINTTAB(0,14) " Processing line ";y%
 NEXT
 CLOSE# in% : REM finished with input file
 CLOSE# out% : REM finished with output file

 aspect = wide% / high% : REM image aspect ratio

 scale=1 : REM scale factor for loaded bitmap file
 r% = 1 : REM flag for "OK"
 SYS "GetSystemMetrics", 0 TO wscreen% : REM get the screen width for the actual computer display
 SYS "GetSystemMetrics", 1 TO hscreen% : REM and height
 IF wide%>wscreen% OR high%>hscreen%-65 THEN
 SYS "MessageBox", @hwnd%, "File too big for the display, scale and load it anyway (colours may be wrong)?", "Load BMP File", 32+1 TO r%
 scale = FNmax(wide% / wscreen%, high% / (hscreen% - 65))
 IF r%=1 THEN
 SYS "SetWindowText", @hwnd%, FNname(outfile$)
 ELSE
 PRINT " Process aborted at file loading stage. Press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF
 ENDIF

 REM set a screen mode to accommodate the inage file, this is Windows stuff

 DIM rc% 15 : REM data block for screen window size
 VDU 23, 22, high% / scale * aspect; high% / scale; 8, 16, 16, 0 : REM don't ask, just don't ask :-)

(5) Make filtered copy of file.bbc Page 1 28/08/2010

 SYS "PatBlt", @memhdc%, 0, 0, 1600, 1200, &FF0062
 SYS "GetSysColor", 5 TO f% : REM look up system colours
 COLOUR 15, f%, f%>>8, f%>>16 : REM define colour 15 in RGB
 SYS "GetClientRect", @hwnd%, rc% : REM get the display screen size
 wwindow% = rc%!8 : hwindow% = rc%!12 + 2 : REM size of window after status bar added
 COLOUR 128 + 15 : CLS : REM set white as background colour and clear to it
 COLOUR 0 : REM black for printing
 SYS "GetWindowLong", @hwnd%, -16 TO f% : REM get window dimensions
 SYS "SetWindowLong", @hwnd%, -16, f% OR &40000 : REM don't lock them
 SYS "GetClientRect", @hwnd%, rc% : REM get window size
 VDU 26, 28, 1, hwindow% / 16 - 2, wwindow% / 8 - 2, 1 : REM now set the actual display window for the image
 IF scale > 1 SYS "SetStretchBltMode", @memhdc%, 3

 REM now we can load and display the file

 OSCLI "Display """ + outfile$ + """ 0,0," + STR$(INT(high% * 2 / scale * aspect)) + "," + STR$(INT(high% * 2 / scale))

 END : REM program ends here, but the window stays open

 REM These are standard routines

 DEF FNnulterm$(A%) : REM return BB4W string from Windows string (terminated by null)
 LOCAL s$
 WHILE ?A% <> 0
 s$ += CHR$(?A%) : A% += 1 : REM strip off characters until the first null
 ENDWHILE
 =s$

 DEF FNinput(A%) : REM read a line of text from the file, throw away non-printing characters
 LOCAL l$
 INPUT# A%, l$
 IF ASC(l$) <= 32 : l$ = MID$(l$,2)
 IF ASC(RIGHT$(l$, 1)) <=32 : l$ = LEFT$(l$, LEN(l$) -1)
 =l$

 DEF FNptr(A%,B%,C%,D%,E%) : REM point to pixel at a%,b%, image c%xd%, e% planes
 =(D% - B%) * ((E% * C% + E%) DIV 4 * 4) + E% * (A% - 1)

 DEF FNget4(A%) : REM get 4 byte number from file
 =FNget2(A%) + 256 * 256 * FNget2(A%)

 DEF FNget2(A%) : REM get a 2 byte number from file
 =(BGET# A%) + 256 * (BGET# A%)

 DEF FNmax(A, B) : REM return the greater value
 IF A > B : = A
 = B

 DEF FNmin(A, B) : REM return the greater value
 IF A < B : = A
 = B

 DEF FNadc(A) : REM RGB coder quantiser, return digits
 LOCAL A%
 A% = 16 + 219 * A
 IF A% > 255 : = 255
 = A%

 DEF FNdac(A) : REM undo coder RGB digitising, return analogue
 =(A - 16) / 219

(5) Make filtered copy of file.bbc Page 2 28/08/2010

