
 REM BBC BASIC FOR WINDOWS (BB4W) program to measure signal levels and
 REM noise levels in a Windows RGB BMP file.

 REM (c) Alan Roberts 2010

 SYS "SetWindowText", @hwnd%, "(4) Measurement of signal levels and noise levels, full screen."

 REM Start with the coding equations.

 eqn% = OPENIN "Coding equations.txt"

 IF eqn% = 0 THEN
 PRINT " Can't find coding equations file (Coding equations.txt). Press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF

 line$ = FNinput(eqn%) : REM read the first line from the file
 IF line$ <> "Coding equations" THEN
 PRINT " File 'Coding equations.txt' is not correct. Press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF

 REPEAT : REM scan the file, ignoring comments (lines starting with //), looking for the equations
 line$ = FNinput(eqn%)
 UNTIL INSTR(line$, "Coder-") = 1 OR EOF# eqn%
 IF EOF# eqn% THEN
 PRINT " File error, no equations defined. Press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF
 PRINTTAB(0,1) "Luma coder : ";line$: REM this is the filter title
 Yr = VAL(FNinput(eqn%)) : REM coding equation coefficients
 Yg = VAL(FNinput(eqn%))
 Yb = VAL(FNinput(eqn%))
 CLOSE# eqn% : REM done with the equations file

 REM routine to get the input BMP file name for processing.

 in%=0 : REM this is going to be the input file handle
 infile$="" : REM and this will be the file name

 DIM of% 75,ff% 255,fn% 255 : REM byte arrays needed for Windows OpenFile routine
 !of%=76 : of%!4=@hwnd% : of%!12=ff% : of%!28=fn%
 of%!32=256 : of%!52=6 : REM BB4W stuff for Windows GetOpenFile routine
 $fn% = CHR$(0) : REM this is going to be the file name
 $ff% = "YUV 422 image file (*.bmp)" + CHR$0 + "*.bmp" + CHR$0 + CHR$0
 SYS "GetOpenFileName", of% TO in%
 IF in% THEN
 infile$ = FNnulterm$(fn%)
 PRINTTAB(0,3) " Input BMP file = " infile$
 ELSE
 PRINTTAB(0,3) " Programme aborted at GetOpen, press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF

 PRINTTAB(0,6) " The bitmap file will now be displayed, scaled down if it's too big to fit the screen."
 PRINT'" A measurement box will be superimposed on it. You can move the box around (use the"
 PRINT " cursor keys, with Shift and Control to set the step size) and change it's size (use < and >"
 PRINT " or - and +)."
 PRINT'" When you are happy with the box size and position, press Enter to start the measurement process."
 PRINT'" Press any key to clear this screen and load the bitmap file."

 IF GET

 REM Now we can get on with it ...

 in% = OPENUP infile$: REM open RGB bitmap file for reading

 IF CHR$(BGET# in%) + CHR$(BGET# in%) <> "BM" THEN
 PRINTTAB(0,10) " This isn't a Windows bitmap file, press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF

 PTR# in% = 10 : start% = FNget4(in%) : REM size of the header block, where image data starts
 PTR# in% = 18 : wide% = FNget4(in%) : REM image width in pixels
 PTR# in% = 22 : high% = FNget4(in%) : REM image height in lines
 CLOSE# in% : REM must close the file in order to load it for display
 aspect = wide% / high% : REM image aspect ratio

 scale=1 : REM scale factor for loaded bitmap file
 r% = 1 : REM flag for "OK"
 SYS "GetSystemMetrics", 0 TO wscreen% : REM get the screen width for the actual computer display
 SYS "GetSystemMetrics", 1 TO hscreen% : REM and height

 IF wide%>wscreen% OR high%>hscreen%-65 THEN
 SYS "MessageBox", @hwnd%, "File too big for the display, scale and load it anyway (colours may be wrong, but analysis will be correct)?", "Lo
ad BMP File", 32+1 TO r%
 scale = FNmax(wide% / wscreen%, high% / (hscreen% - 65))
 IF r% > 1 THEN
 PRINT " Process aborted at file loading stage. Press any key to exit."
 IF GET QUIT : REM we're not doing any more, so close the window
 ENDIF
 ENDIF

 SYS "SetWindowText", @hwnd%, "(4) Analyse file - " + FNname(infile$)

 REM set a screen mode to accommodate the inage file, this is Windows stuff

 DIM rc% 15 : REM data block for screen window size
 VDU 23, 22, high% / scale * aspect; high% / scale; 8, 16, 16, 0 : REM don't ask, just don't ask :-)
 SYS "PatBlt", @memhdc%, 0, 0, 1600, 1200, &FF0062
 SYS "GetSysColor", 5 TO f% : REM look up system colours
 COLOUR 15, f%, f%>>8, f%>>16 : REM define colour 15 in RGB
 SYS "GetClientRect", @hwnd%, rc% : REM get the display screen size
 wwindow% = rc%!8 : hwindow% = rc%!12 + 2 : REM size of window after status bar added
 COLOUR 128 + 15 : CLS : REM set white as background colour and clear to it
 COLOUR 0 : REM black for printing
 SYS "GetWindowLong", @hwnd%, -16 TO f% : REM get window dimensions
 SYS "SetWindowLong", @hwnd%, -16, f% OR &40000 : REM don't lock them
 SYS "GetClientRect", @hwnd%, rc% : REM get window size
 VDU 26, 28, 1, hwindow% / 16 - 2, wwindow% / 8 - 2, 1 : REM now set the actual display window for the image
 IF scale > 1 SYS "SetStretchBltMode", @memhdc%, 3

 REM now we can load and display the file

 PRINTwwindow%,hwindow%:IFGET

 OSCLI "Display """ + infile$ + """ 0,0," + STR$(INT(high% * 2 / scale * aspect)) + "," + STR$(INT(high% * 2 / scale))

 REM next, define the measurement area

 xl% = 40 : xr% = wwindow% - 40 : REM Measurement box horizontal limits,
 yt% = 40 : yb% = hwindow% - 40 : REM and vertical limits.
 GCOL 3, 7 : REM Set graphic colour to invert what's there.
 RECTANGLE 2 * xl%, 2 * yt%, 2 * (xr% - xl%), 2 * (yb% - yt%) : REM Draw the measurement box, BB4W uses scaled graphics
 REPEAT
 WAIT 5 : REM relax for a bit (1/20 second, not critical)
 h% = 0 : REM horizontal mnovement increment
 v% = 0 : REM vertical movement increment

(4) Analyse, full screen.bbc Page 1 28/08/2010

 s% = 0 : REM size increment
 IF INKEY(-26) : h% = -2 : IF INKEY(-1) : h% = -10 : REM cursor left : and shifted
 IF INKEY(-122) : h% = 2 : IF INKEY(-1) : h% = 10 : REM cursor right : and shifted
 IF INKEY(-58) : v% = 2 : IF INKEY(-1) : v% = -2 : REM cursor up : and shifted
 IF INKEY(-42) : v% = -2 : IF INKEY(-1) : v% = -10 : REM cursor down : and shifted
 IF INKEY(-64) : v% = 40 : REM page up
 IF INKEY(-79) : v% = -40 : REM page down
 IF INKEY(-103) : s% = -2 : IF INKEY(-1) : s% = -10 : REM < or , key : and shifted
 IF INKEY(-104) : s% = 2 : IF INKEY(-1) : s% = 10 : REM > or . key : and shifted
 IF INKEY(-24) : s% = -2 : IF INKEY(-1) : s% = -10 : REM _ or - key, : and shifted
 IF INKEY(-94) : s% = 2 : IF INKEY(-1) : s% = 10 : REM + or = key : and shifted
 IF INKEY(-2) THEN
 IF INKEY(-26) : h% = -40 : REM cursor left and ctrl
 IF INKEY(-122) : h% = 40 : REM cursor right and ctrl
 IF INKEY(-58) : v% = 40 : REM cursor up and ctrl
 IF INKEY(-42) : v% = -40 : REM cursor down and ctrl
 ENDIF
 RECTANGLE 2 * xl%, 2 * yt%, 2 * (xr% - xl%), 2 * (yb% - yt%) : REM delete the box
 xl% += h% - s% : xr% += h% + s% : yt% += v% - s% : yb% += v% + s% : REM move the edges
 RECTANGLE 2 * xl%, 2 * yt%, 2 * (xr% - xl%), 2 * (yb% - yt%) : REM redraw the moved box
 UNTIL INKEY(-74) : REM until the Enter key is pressed
 REPEAT UNTIL INKEY(0)=-1 : REM This empties the keyboard buffer, just to be safe

 REM now we can do the actual measurements.

 left = 0 : right = 0 : REM These will be the mean luma values at the left and right edges of the box,
 top = 0 : bottom = 0 : REM and these across the top and bottom edges,
 middle = 0 : REM and at the middle, all to see if there's any shading in the file.
 Rm = 0 : Gm = 0 : Bm = 0 : Ym = 0 : REM These will be the mean signal levels
 Rn = 0 : Gn = 0 : Bn = 0 : Yn = 0 : REM and these the noise levels

 in% = OPENUP infile$:REM re-open the RGB bitmap file for measurement

 @%=&2030A : REM fixed 3 decimal places, 10 digit columns

 xl% *= scale : xr% *= scale : yt% *= scale : yb% *= scale : REM allow for screen scaling

 FOR y% = yt% TO yb%
 PTR# in% = FNptr(xl%, y%, wide%, high%, 3) + start%
 left += FNdac(BGET# in%)
 PTR# in% = FNptr(xr%, y%, wide%, high%, 3) + start%
 right += FNdac(BGET# in%)
 NEXT
 PRINT'" Mean level, left edge = " ;left / (yb% - yt% + 1) " "
 PRINT " Mean level, right edge = " ;right / (yb% - yt% + 1) " "

 PTR# in% = FNptr(xl%, yt%, wide%, high%, 3) + start%
 FOR x% = xl% TO xr%
 top += FNdac(BGET# in%)
 NEXT
 PRINT " Mean level, top edge = " ;top / (xr% - xl% + 1) " "

 PTR# in% = FNptr(xl%, yb%, wide%, high%, 3) + start%
 FOR x% = xl% TO xr%
 bottom += FNdac(BGET# in%)
 NEXT
 PRINT " Mean level, bottom edge = " ;bottom / (xr% - xl% + 1) " "

 FOR y% = high% / 2 - 20 TO high% / 2 + 20
 PTR# in% = FNptr(wide% / 2 -20, y%, wide%, high%, 3) + start%
 FOR x% = wide% / 2 -20 TO wide% / 2 + 20
 middle += FNdac(BGET# in%)
 NEXT
 NEXT
 PRINT " Mean level, middle = " ;middle / (41 * 41) " "

 @%=&A : REM default print format

 PRINTTAB(0,7) " Measuring overall mean level "
 PRINT " Line "
 FOR y% = yt% TO yb%
 PTR# in% = FNptr(xl%, y%, wide%, high%, 3) + start%
 PRINTTAB(6,8) ;y% " "
 FOR x% = xl% TO xr%
 Bm += FNdac(BGET# in%) : Gm += FNdac(BGET# in%) : Rm += FNdac(BGET# in%) : REM accumulate pixel values
 NEXT
 NEXT
 Bm /= ((xr% - xl% + 1) * (yb% - yt% + 1)) : REM divide by the number of measured samples
 Gm /= ((xr% - xl% + 1) * (yb% - yt% + 1))
 Rm /= ((xr% - xl% + 1) * (yb% - yt% + 1))
 Ym = Yr * Rm + Yg * Gm + Yb * Bm : REM generate the luma value using the coding equation

 @%=&2030A : REM fixed 3 decimal places, 10 digit columns

 PRINTTAB(0,7) " Mean levels of " ;(xr% - xl% + 1) * (yb% - yt% + 1) " pixels "
 PRINT " Mean level, Red plane = " ;Rm " "
 PRINT " Mean level, Green plane = " ;Gm " "
 PRINT " Mean level, Blue plane = " ;Bm " "
 PRINT " Mean level, luma (Y) = " ;Ym " "

 @%=&A : REM default print format

 PRINT'" Measuring noise levels "
 PRINT " Line "
 FOR y% = yt% TO yb%
 PTR# in% = FNptr(xl%, y%, wide%, high%, 3) + start%
 PRINTTAB(6,13) ;y% " "
 FOR x% = xl% TO xr%
 Bn += (FNdac(BGET# in%) - Bm) ^ 2 : REM accummulate squares of differences from the mean
 Gn += (FNdac(BGET# in%) - Gm) ^ 2
 Rn += (FNdac(BGET# in%) - Rm) ^ 2
 NEXT
 NEXT
 CLOSE# in% : REM finished with the bitmap file
 Bn /= ((xr% - xl% + 1) * (yb% - yt% + 1)) : REM divide by the number of measured samples
 Gn /= ((xr% - xl% + 1) * (yb% - yt% + 1))
 Rn /= ((xr% - xl% + 1) * (yb% - yt% + 1))
 Yn = Yr * Rn + Yg * Gn + Yb * Bn : REM luma noise is the luma-weighted sum of the square values.
 Bn = 20 * LOG(SQR(Bn)) : Gn = 20 * LOG(SQR(Gn)) : REM Noise levels in dB, take square root of accumulated value first
 Rn = 20 * LOG(SQR(Rn)) : Yn = 20 * LOG(SQR(Yn)) : REM the log to get the dB value relative to white at level 1.

 @%=&2020A : REM fixed 2 decimal places, 10 digit columns

 PRINT' " PSNR, Red plane = " ;Rn " dB "
 PRINT " PSNR, Green plane = " ;Gn " dB "
 PRINT " PSNR, Blue plane = " ;Bn " dB "
 PRINT " PSNR, Luma (Y') plane = " ;Yn " dB "

 PRINT'" Processing completed. Press any key to exit. "
 @%=&A : REM default print format
 IF GET

 QUIT : REM all done, close the window

 REM These are standard routines

 DEF FNnulterm$(A%) : REM return BB4W string from Windows string (terminated by null)

(4) Analyse, full screen.bbc Page 2 28/08/2010

 LOCAL s$
 WHILE ?A% <> 0
 s$ += CHR$(?A%) : A% += 1 : REM strip off characters until the first null
 ENDWHILE
 = s$

 DEF FNinput(A%) : REM read a line of text from the file, throw away non-printing characters
 LOCAL l$
 INPUT# A%, l$
 IF ASC(l$) <= 32 : l$ = MID$(l$,2)
 IF ASC(RIGHT$(l$, 1)) <=32 : l$ = LEFT$(l$, LEN(l$) -1)
 =l$

 DEF FNget4(A%) : REM get 4 byte number from file
 = FNget2(A%) + 256 * 256 * FNget2(A%)

 DEF FNget2(A%) : REM get a 2 byte number from file
 = (BGET# A%) + 256 * (BGET# A%)

 DEF FNptr(A%,B%,C%,D%,E%) : REM point to pixel at a%,b%, image c%xd%, e% planes
 = (D% - B%) * ((E% * C% + E%) DIV 4 * 4) + E% * (A% - 1)

 DEF FNdac(A) : REM undo coder YRGB digitising, return analogue
 = (A - 16) / 219

 DEF FNmax(A, B) : REM return lerger of A and B
 IF A > B : = A
 = B

 DEF FNname(A$) : REM drop path from filename
 LOCAL n$, p%
 p% = LEN(A$)
 WHILE MID$(A$, p%, 1) <> "\" AND p% > 0
 n$ =MID$(A$, p%, 1) + n$
 p% -= 1
 ENDWHILE
 = n$

 DEF FNdac(A) : REM undo coder RGB digitising, return analogue
 =(A - 16) / 219

(4) Analyse, full screen.bbc Page 3 28/08/2010

