REM BBC BASIC FOR WINDOWS (BB4W) program to perform spatial filtering
REM on a windows BMP RGB file.

REM (c) Alan Roberts 2010

SYs "setwindowText", @hwnd%, "(5) Generate filtered copy of RGB BMP file."
REM first get the filter coefficients

filter% = OPENIN "Noise filter.txt"

1F filter® = 0 THEN .
PRINT " Can't find noise filter file (N01se f11ter txt). Press any key to exit."

IF GET QUIT : REM we're not doing any more, so close the window
ENDIF
Tine$ = FN1nput(f11terA) : REM read the first line from the file

IF Tine$ <> Noise filter" THEN)
PRINT " File 'Noise filter.txt' 15 not correct. Press any key to exit."

IF GET QUIT :REM we're not doing any more, so close the window
ENDIF
REPEAT : REM scan the file, ignoring comments (lines starting with //), looking for the filter

Tine$ = FNinput(filter%)
UNTIL INSTR(1ine$, "Filter-") = 1 orR EOF# filter%
IF EOF# filter% THEN
PRINT " File error, no filter defined. Press any key to exit.

IF GET QUIT REM we're not do1ng any more, so close the window
ENDIF
PRINTTAB(0,1) " Noise filter : ";line$ 1 REM this is the filter title
order% = VAL(FN1nput(f11terA)) : REM this should be the filter order
PRINTTAB(5,3) " Filter order = ";order% L
DIM term(orderA/2+1) : REM create an array to hold the coefficients
FOR term%=0 TO order%/2 . L i
term(term%) = VAL(FNinput(filter%)) : REM read a coefficient at a time
NEXT
CLOSE# filter% : REM done with the filter file

PRINTTAB(0,5) " Horizontal spatial fi]tering is done on each plane of the file (R, G and B) separately,"”

PRINT " vertical filtering is not needed.

REM routine to get the input BMP file name for processing.

in%=0 : REM this is going to be the input file handle

infile$="" : REM and this will be the file name

out%=0 : REM this is going to be the output file handle

outfile$="" : REM and this will be the file name

DIM of% 75,ff% 255,fn% 255 : REM byte arrays needed for windows OpenFile routine
10f%=76 1 of%!4=C@hwnd% : of%!12=Fff% : of%!28=fn%

of%!132=256 : of%!52=6 : REM BB4W stuff for W1ndows GetOpenFile routine

$fn% = CHRE(0) REM this is going to be the file name

$Ff% = "vuv 422 1mage file (Lbmp) " + CHRIO + "¥.bmp" + CHRSO + CHRSO
SYS "GetOpenFileName", of% TO in%
IF in% THEN

infile$ = Fnnulterm$ (fn%)

outfile$ = LEFTS(infile$, LEN(1nf11e$) - 4) + "-hpfx2.bmp"

PRINTTAB(0,8) " Input File = " infile$

PRINTTAB(0,9) " output file = " outfile$
ELSE

PRINTTAB(0,11) " Programme aborted at GetOpen, press any key to exit." i

IF GET QUIT : REM we're not do1ng any more, so close the window
ENDIF

REM Now we can get on with it ...
in% = OPENUP infile$:REM open YUV bitmap file for reading

IF CHRS(BGET# in%) + CHRS(BGET# in%) <> "BM" THEN
PRINTTAB(0,14) ™ This isn't a W1ndows bitmap file, press any key to exit.

IF GET QUIT :REM we're not doing any more, so close the w1ndow
ENDIF
PTR# in% = 10 : start% = FNget4(in%) : REM size of the header block, where image data starts
PTR# in% = 18 : wide% = FNget4(in%) : REM image width in pixels
PTR# in% = 22 : high% = rFnget4(in%) : REM image height in lines i
PTR# in% = 0 : REM reset ready to start copying the header block
out% = OPENOUT outfile$: REM open new file for RGB output .
FOR p% = 1 TO start% : REM copy the header block from input to output file
BPUT# out%, BGET# in%
NEXT

REM now we can do the actual conversion.

PTR# out% = start%

FOR y% = 1 TO high% : REM beware, images are stored inverted in BMP files
PTR# out% = FNptr(0, y%, wide%, high%, 3) + start% : REM each 1ine in turn
FOR x%= 1 TO wide%
R=1/2 : G=1/2 : B =1/2 : REM reset for accummulation, set to mid-grey
FOR term% = -order%/2 T0 order%/2
p% = x% + term¥% : REM actual pixel position
p% = FNmax(p%, 1) : REM avoid going off image to the left
p% = FNmin(p%, wide%) : REM and right
PTR# in% = FNptr(p%, y%, wide%, high%, 3) + start% : REM read pixels around the target point
B += (FNdac(BGET# in%) * term(ABS(term%)) * 2) : REM accumulate values, wei?hted by the filter
G += (FNdac(BGET# in%) * term(ABS(term%)) * 2) : REM and doubled to avoid clipping noise
R += (FNdac(BGET# in%) * term(ABs(term%)) * 2)
NEXT
BPUT# out%, FNadc(B) : BPUT# out%, FNadc(G) : BPUT# out%, FNadc(R)
NEXT
PRINTTAB(0,14) " Processing line ";y%
NEXT
CLOSE# in% : REM finished with input file
CLOSE# out% : REM finished with output file
aspect = wide% / high% : REM image aspect ratio
scale=1 : REM scale factor for Toaded bitmap file
r%6 =1 : REM flag for "OK"

SYS "GetSystemMetrics", 0 TO wscreen% : REM get the screen width for the actual computer display

SYS "GetsystemMetrics", 1 TO hscreen% : REM and height
IF wide%>wscreen¥% OR high%>hscreen%-65 THEN

SYS "MessageBox", @hwnd%, "File too big for the disp]ggj scale and Toad it anyway (colours may be wrong)?",

scale = FNmax(wide% / wscreen%, high% / (hscreen¥% - 6
IF r%=1 THEN
sys "setwindowText", @hwnd%, FNname(outfile$)
ELSE
PRINT " Process aborted at file Toading stage. Press any key to exit."

IF GET QUIT : REM we're not doing any more, so close the window

ENDIF
ENDIF

REM set a screen mode to accommodate the inage file, this is windows stuff

DIM rc% 15 : REM data block for screen window size
vDU 23, 22, high% / scale * aspect; high% / scale; 8, 16, 16, 0 : REM don't ask, just don't ask :-)

"Load BMP File", 32+1 TO r%

(5) Make filtered copy of file.bbc Page 1

28/08/2010

sys "pate1t", @memhdc%, 0, 0, 1600, 1200, &FF0062
SYs "GetSysColor", 5 TO %

CoLOUrR 15, %, f%>>8, f%>>16

svys "GetClientrRect", @hwnd%, rc%

wwindow% = rc%!8 : hwindow% = rc%!12 + 2

: REM
: REM
: REM

REM

Took up system colours

define colour 15 in RGB

get the display screen size

size of window after status bar added

COLOUR 128 + 15 : CLS : REM set white as background co1our and clear to it

COLOUR 0O REM
sys "GetwindowLong", @hwnd%, -16 TO % : REM
Sys "setwindowLong", @hwnd%, -16, fV OR &40000 : REM
svs "GetClientrect", @hwnd%, rc% : REM
vbU 26, 28, 1, hwindow% / 16 - 2, wwindow% / 8 - 2, 1 : REM
IF scale > 1 sys "setstretchBltMmode", @memhdc%, 3

REM now we can load and display the file

0scLT "pisplay """ + outfile$ + """ 0,0," + STRS(INTChigh% *
END : REM program ends here, but the window stays open

REM These are standard routines

black for printing

get window dimensions

don't Tock them

get window size

now set the actual display window for the image

2 / scale * aspect)) + "," + STRS(INT(Chigh% * 2 / scale))

DEF FNnulterm$(A%) : REM return BB4W string from windows string (terminated by null)

LOCAL s$
WHILE ?A% <> 0

s$ += CHRS(?A%) : A% += 1 : REM strip off characters until the first null

ENDWHILE

=s$

DEF FN%gput(A%) : REM read a Tine of text from the file, throw away non-printing characters
LOCAL

INPUTH# A%, 1%

IF ASC(1$) <= 32 : 1% = vins(1$,2)

I§$ASC(RIGHT$(1$, 1)) <=32 : 1$ = Ler7$Q1$, LENCTS) -1)

DEF FNptr(A%,B%,C%,D%,E%) : REM point to p1xe1 at a%, bf, image c%xd%, e% planes

=(D% - B%) * ((E% * C% + E%) DIV 4 * 4) + E% * (A% -

DEF FNget4(A%) : REM get 4 byte number from file
=FNget2(A%) + 256 * 256 * FNget2(A%)

DEF FNget2(A%) : REM get a 2 byte number from file
=(BGET# A%) + 256 * (BGET# A%)

DEF FNmax (A, B) : REM return the greater value
IFA>B : =
=B

DEF FNmin(A, B) : REM return the greater value
IFA<B : =
=B

DEF FNadc(A) : REM RGB coder quantiser, return digits
LOCAL A%

A% = 16 + 219 * A

IF A% > 255 : = 255

= A%

DEF FNdac(A) : REM undo coder RGB digitising, return analogue

=(A - 16) / 219

(5) Make filtered copy of file.bbc

Page 2

28/08/2010

