REM BBC BASIC FOR WINDOWS (BB4W) program to convert a 4:4:4 vuv file to
REM RGB by video decoding.

REM (c) Alan Roberts 2010

SYs "setwindowText", @hwnd%, "(3) Generate RGB bitmap file from 4:4:4 vuv bitmap file."
REM Start with the coding equations.

eqn% = OPENIN "Coding equations.txt"

IF eqn% = 0 THEN .
PRINT " Can't find coding equat1ons file (Cod1ng equations.txt). Press any key to exit."

IF GET QUIT REM we're not doing any more, so close the window
ENDIF
Tine$ = FN1nput(eqn%) : REM read the first line from the file

IF Tine$ <> cod1ng equations" THEN))
PRINT " File 'Coding equations.txt' is not correct. Press any key to exit."

IF GET QUIT : REM we're not doing any more, so close the window
ENDIF
REPEAT : REM scan the file, ignoring comments (lines starting with //), Tooking for the equations

Tine$ = FNinput(eq
UNTIL INSTR(1ine$,
IF EOF# eqn% THEN
PRINT " File error, no equations defined. Press any key to exit."

Coder—“) = 1 OR EOF# eqn%

IF GET QUIT : REM we're not doing any more, so close the window
ENDIF
PRINTTAB(0,1) " Coder : ";line$: REM this is the filter title
Yr = VAL(FNinput(eqn%)) : REM coding equation coefficients
Yg = VAL(FNinput(eqn%))
Yb = vAL(FNinput(eqn%))
Cb = vAL(FNinput(eqn%))
cr = VAL(FNinput(eqn%))
CLOSE# eqn% : REM done with the equations file

REM routine to get the input BMP file name for processing.

in%=0 : REM this is going to be the input file handle
infile$="" : REM and this will be the file name
out%=0 : REM this is going to be the output file handle
outfile$="" : REM and this will be the file name

DIM of% 75,ff% 255,fn% 255 : REM byte arrays needed for windows OpenFile routine
10f%=76 1 of%!4=C@hwnd% : of%!12=Fff% : of%!28=fn%
of%!132=256 : of%!52=6 : REM BB4W stuff for windows GetOpenFile routine
$fn% = CHRE(0) REM this is going to be the file name
$Ff% = "vuv 422 image file (*.bmp)" + CHR30 + "*.bmp" + CHR$0 + CHRS$O
SYS "GetOpenFileName", of% TO in%
IF in% THEN
infile$ = Fnnulterm$ (fn%)
outfile$ = LEFTS(infile$, LEN(infile$) - 4) + "- gb bmp"

PRINTTAB(C0,5) " Input YUV (4:2:2) file = " infile

PRINTTAB(0,7) " output RGB file = " outfile$
ELSE

PRINTTAB(0,9) " Programme aborted at GetOpen, press any key to exit." i

IF GET QUIT : REM we're not doing any more, so close the window
ENDIF

PRINTTAB(0,11) " The input file is assumed to be organ1sed as 4:4:4 vyuv, Cb in the B plane,"”
PRINTTAB(0,12) " Y 1in the G plane, Cr in the R plane.'

REM Now we can get on with it ...
in% = OPENUP infile$: REM open YUV bitmap file for reading

IF CHRS(BGET# in%) + CHRS(BGET# in%) <> "BM" THEN
PRINTTAB(0,14) " This isn't a w1nd0ws bitmap file, press any key to exit."

IF GET QUIT : REM we're not doing any more, so close the window
ENDIF
PTR# in% = 10 : start% = FNget4(in%) : REM size of the header block, where image data starts
PTR# in% = 18 : wide% = FNget4(in%) : REM image width in pixels
PTR# in% = 22 : high% = FNget4(in%) : REM image height in Tines i
PTR# in% = 0 : REM reset ready to start copying the header block
out% = OPENOUT outfile$: REM open new file for RGB output .
FOR p% = 1 TO start% : REM copy the header block from input to output file
BPUT# out%, BGET# in%
NEXT

REM now we can do the actual conversion.

U=0 : REM Cb value
V =0 : REM Cr value
V =0 : REM Y' value

FOR y% = 1 TO high% : REM beware, images are stored inverted in BMP files
PTR# in% = FNptr(0, y%, wide%, high%, 3) + start% : REM each line in turn
PTR# out% = FNptr(0, y%, wide%, high%, 3) + start% : REM each line in turn
FOR x%= 1 TO wide%

U = FNUvdac(BGET# in%) : Y = FNdac(BGET# in%) : V = FNUVdac(BGET# in%) : REM the YUV values
B=U/Cb+Y:R=V / cr +Y
G=(Y-Yr*R-Yb* / Yg
BPUT# out%, FNadc(B) : BPUT# out%, FNadc(G) : BPUT# out%, FNadc(R)
NEXT
PRINTTAB(0,14) " Processing line ";y%
NEXT

CLOSE# in% : REM finished with input file
CLOSE# out% : REM finished with output file

PRINTTAB(0,16) " Do you want to Toad the file for viewing now? (N = exit) "
IF INSTR(C"Nn", GET$) : QUIT : REM we're not loading it, so close the window
aspect = wide% / high% : REM image aspect ratio

scale=1l : REM scale factor for Tloaded bitmap file
r% =1 : REM flag for "OK"
SYS "GetSystemMetrics", 0 TO wscreen% : REM get the screen width for the actual computer display
SYS "GetSystemMmetrics", 1 TO hscreen% : REM and height
IF wide%>wscreen¥% OR high%>hscreen%-65 THEN
SYS "MessageBox", @hwnd%, "File too big for the display, scale and load it anyway (colours may be wrong)?", "Load BMP File", 32+1 TO r%
scale = FNmax(wide% / wscreen¥%, high% / (hscreen% - 65))
IF r%=1 THEN
sys "setwindowText", @hwnd%, FNname(outfile$)
ELSE

PRINT " Process aborted at file Toading stage. Press any key to exit."
IF GET QUIT : REM we're not doing any more, so close the window
ENDIF
ENDIF

REM set a screen mode to accommodate the inage file, this is windows stuff

DIM rc% 15 : REM data block for screen window size
vDU 23, 22, high% / scale * aspect; high% / scale; 8, 16, 16, 0 : REM don't ask, just don't ask :-)

(3) Make RGB BMP from YUV BMP.bbc Page 1 28/08/2010

sys "patB1t", @memhdc%, 2, 0, 1600, 1200, &FF0062

SYs "GetSysColor", 5 TO % : REM Took up system colours

coLour 15, %, f%>>8, f%>>16 : REM define colour 15 in RGB

Sys "GetClientRect", @hwnd%, rc% : REM get the display screen size

wwindow% = rc%!8 : hwindow% = rc%!12 + 2 : REM size of window after status bar added

COLOUR 128 + 15 : CLS : REM set white as background colour and clear to it
COLOUR O : REM black for printing

sys "GetwindowLong", @hwnd%, -16 TO % : REM get window dimensions

sys "setwindowLong", @hwnd%, -16, f% OrR &40000 : REM don't Tock them

Sys "GetClientRect", @hwnd%, rc% : REM get window size

vDU 26, 28, 1, hwindow% / 16 - 2, wwindow% / 8 - 2, 1 : REM now set the actual display window for the image
IF scale > 1 sys "setstretchBltMmode", @memhdc%, 3

REM now we can load and display the file

0SCLI "Display """ + outfile$ + """ 0,0," + STR$(INT(Chigh% * 2 / scale * aspect)) + "," + STRS(INT(Chigh% * 2 / scale))
END : REM program ends here, but the window stays open

REM These are standard routines

DEF FNnulterm$(A%) :REM return BB4w string from windows string (terminated by null)

LOCAL s$
WHILE ?A% <> 0

s$ += CHRS(?A%) : A% += 1 :REM strip off characters until the first null

ENDWHILE
=s$

DEF FNinput(A%) : REM read a line of text from the file, throw away non-printing characters

LOoCAL 1%
INPUTH# A%, 1%
IF ASC(1$) <= 32 :

1 MIn$(1$,2)
I§$ASC(RIGHT$(1$, 1) 1% =

$ =1
) <=32 : LEFTS(1$, LENCI®) -1)

DEF FNget4(A%) : REM get 4 byte number from file
=FNget2(A%) + 256 * 256 * FNget2(A%)

DEF FNget2(A%) : REM get a 2 byte number from file
=(BGET# A%) + 256 * (BGET# A%)

DEF FNptr(A%,B%,C%,D%,E%) : REM point to pixel at a%,b%, image c%xd%, e% planes

=(D% - B%) * ((E% * C% + E%) DIV 4 * 4) + E% * (A% - 1)

DEF FNadc(A) : REM YRGB coder quantiser, return digits
LOCAL A%

A% = 16 + 219 * A

IF A% > 255 : =255

= A%

DEF FNdac(A) : REM undo coder YRGB digitising, return analogue
6) / 219

=(a -1

DEF FNUvdac(A) : REM undo coder UV digitising, return analogue

= (A - 128) / 224

(3) Make RGB BMP from YUV BMP.bbc

Page 2

28/08/2010

